Overview Significance Tests

For all Tests and Confidence Intervals applies: first check the conditions that must be met to allow the use of the test.

Conditions for Tests and CI’s concerning a Mean

  1. Random Samples or Randomized Experiment
  2. 10% condition; this condition is not relevant in case of a randomized experiment
  3. normal distribution/ large sample (n>=30) condition

Conditions for Tests and CI’s concerning a Proportion

  1. Random Samples or Randomized experiment
  2. 10% condition; this condition is not relevant in case of a randomized experiment
  3. LC condition; np \(\ge\) 10 and n(1-p) \(\ge\) 10.

In case of two-sample CI’s or tests, check the conditions for both populations/groups separately.

Overview of the STATS —> TESTS menu on the TI84

1. Z-test

The Z-test is used for a 1-sample test about a population mean in case the population standard deviation is known.

H0: \(\mu\) = \(\mu_0\)
HA: \(\mu \ne \mu_0\) or \(\mu < \mu_0\) or \(\mu > \mu_0\)

The sample statistic used is a z-value; \(z = \frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}}\)

Report: the name of the test used, z-value, the P-value and the conclusion in the context.

2. T-test

The T-test is used for a 1-sample test about a population mean in case the population standard deviation is unknown.

H0: \(\mu\) = \(\mu_0\)
HA: \(\mu \ne \mu_0\) or \(\mu < \mu_0\) or \(\mu > \mu_0\)

The sample statistic used is a t-value with df = n-1; \(t = \frac{\bar{x}-\mu_0}{\frac{s}{\sqrt{n}}}\)

Report: the name of the test used, t-value, the P-value and the conclusion in the context.

Note. In a scientific report, the degrees of freedom of the t-distribution used will also be reported; unfortunately the calculator doesn’t provide this output.

3. 2-SampZTest

A 2-Sample Z-Test is used for a significance test about the difference between two population means in case the population standard deviations are known.

H0: \(\mu_1 - \mu_2 = 0\)
HA: \(\mu_1 - \mu_2 \ne 0\) or \(\mu_1 - \mu_2 < 0\) or \(\mu_1 - \mu_2 > 0\)

The sample statistic used is: z-value; \(z = \frac{(\bar{x_1} - \bar{x_2}) - 0}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}\)

Report: Report: the name of the test used, z-value, the P-value and the conclusion in the context.

4. 2-SampTTest

A 2-Sample Z-Test is used for a significance test about the difference between two population means is case the population standard deviations are known.

H0: \(\mu_1 - \mu_2 = 0\)
HA: \(\mu_1 - \mu_2 \ne 0\) or \(\mu_1 - \mu_2 < 0\) or \(\mu_1 - \mu_2 > 0\)

The sample statistic used is: t-value; \(t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}\)

Report: Report: the name of the test used, t-value, the P-value and the conclusion in the context.

5. 1-PropZTest

The Z-test is used for a 1-sample test about a population proportion.

H0: \(p\) = \(p_0\)
HA: \(p \ne p_0\) or \(p < p_0\) or \(p > p_0\)

The sample statistic used is a z-value, \(z = \frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}\)

Report: the name of the test used, z-value, the P-value and the conclusion in the context.

6. 2-PropZTest

A 2-Sample Proportion Z-Test is used for a significance test about the difference between two population proportions.

H0: \(p_1 - p_2 = 0\)
HA: \(p_1 - p_2 \ne 0\) or \(p_1 - p_2 < 0\) or \(p_1 - p_2 > 0\)

Te sample statistic used is a z-value,

\(z = \frac{(\hat{p}_1-\hat{p}_2)-0}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}\)

Report: the name of the test used, z-value, the P-value and the conclusion in the context.

7. ZInterval

A Z-interval is a Confidence Interval for an unknown Population Mean in case the Population Standard Deviation is known.

Formula: \(CI = \bar{x} \pm z \times \frac{\sigma}{\sqrt{n}}\)

Report: Confidence Level, the borders of the CI and interpretation in the context.

8. TInterval

A T-interval is a Confidence Interval for an unknown Population Mean in case the Population Standard Deviation is unknown.

Formula: \(CI = \bar{x} \pm t \times \frac{s}{\sqrt{n}}\) The t-value comes from the t distribution with df = n-1.

Report: Confidence Level, the borders of the CI and interpretation in the context.

9. 2-SampZInt

A two Sample Z Interval is a confidence interval for the difference between two population means in case the standard deviations of the two populations are known.

Formula: \(CI = \bar{x}_1 - \bar{x}_2 \pm z \times \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\)

Report: Confidence Level, the borders of the CI and interpretation in the context.

0. 2-SampTInt

A two Sample Z Interval is a confidence interval for the difference between two population means in case the standard deviations of the two populations are unknown.

Formula: \(CI = \bar{x}_1 - \bar{x}_2 \pm z \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\)

Report: Confidence Level, the borders of the CI and interpretation in the context.

A. 1-PropZInterval

A Z-interval is a Confidence Interval for an unknown Population Proportion.

Formula: \(CI = \hat{p} \pm z \times \sqrt{\frac{\hat{p}(1-\hat{p})}{{n}}}\)

Report: Confidence Level, the borders of the CI and interpretation in the context.

B. 2-PropZInterval

A two Proportion Z Interval is a confidence interval for the difference between two population proportions.

Formula: \(CI = \hat{p_1} - \hat{p_2} \pm z \times \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}\)

Report: Confidence Level, the borders of the CI and interpretation in the context.

LS0tCnRpdGxlOiAiU2lnbmlmaWNhbmNlIFRlc3RzIGFuZCBDb25maWRlbmNlIEludGVydmFscyIKb3V0cHV0OgogIHBkZl9kb2N1bWVudDogZGVmYXVsdAogIGh0bWxfZG9jdW1lbnQ6CiAgICBkZl9wcmludDogcGFnZWQKICBodG1sX25vdGVib29rOgogICAgY3NzOiBkb2NzLmNzcwotLS0KCiMgT3ZlcnZpZXcgU2lnbmlmaWNhbmNlIFRlc3RzCgpGb3IgYWxsIFRlc3RzIGFuZCBDb25maWRlbmNlIEludGVydmFscyBhcHBsaWVzOiBmaXJzdCBjaGVjayB0aGUgY29uZGl0aW9ucyB0aGF0IG11c3QgYmUgbWV0IHRvIGFsbG93IHRoZSB1c2Ugb2YgdGhlIHRlc3QuICAgCgoqKkNvbmRpdGlvbnMgZm9yIFRlc3RzIGFuZCBDSSdzIGNvbmNlcm5pbmcgYSBNZWFuKiogIAoKKDEpIFJhbmRvbSBTYW1wbGVzIG9yIFJhbmRvbWl6ZWQgRXhwZXJpbWVudAooMikgMTAlIGNvbmRpdGlvbjsgdGhpcyBjb25kaXRpb24gaXMgbm90IHJlbGV2YW50IGluIGNhc2Ugb2YgYSByYW5kb21pemVkIGV4cGVyaW1lbnQKKDMpIG5vcm1hbCBkaXN0cmlidXRpb24vIGxhcmdlIHNhbXBsZSAobj49MzApIGNvbmRpdGlvbgoKCioqQ29uZGl0aW9ucyBmb3IgVGVzdHMgYW5kIENJJ3MgY29uY2VybmluZyBhIFByb3BvcnRpb24qKiAgCgooMSkgUmFuZG9tIFNhbXBsZXMgb3IgUmFuZG9taXplZCBleHBlcmltZW50CigyKSAxMCUgY29uZGl0aW9uOyB0aGlzIGNvbmRpdGlvbiBpcyBub3QgcmVsZXZhbnQgaW4gY2FzZSBvZiBhIHJhbmRvbWl6ZWQgZXhwZXJpbWVudAooMykgTEMgY29uZGl0aW9uOyBucCAkXGdlJCAxMCBhbmQgbigxLXApICRcZ2UkIDEwLiAKCgpJbiBjYXNlIG9mIHR3by1zYW1wbGUgQ0kncyBvciB0ZXN0cywgY2hlY2sgdGhlIGNvbmRpdGlvbnMgZm9yIGJvdGggcG9wdWxhdGlvbnMvZ3JvdXBzIHNlcGFyYXRlbHkuICAKCiMjIE92ZXJ2aWV3IG9mIHRoZSBTVEFUUyAtLS0+IFRFU1RTIG1lbnUgb24gdGhlIFRJODQKCiMjIyAxLiBaLXRlc3QKVGhlIFotdGVzdCBpcyB1c2VkIGZvciBhIDEtc2FtcGxlIHRlc3QgYWJvdXQgYSBwb3B1bGF0aW9uIG1lYW4gaW4gY2FzZSB0aGUgcG9wdWxhdGlvbiBzdGFuZGFyZCBkZXZpYXRpb24gaXMga25vd24uICAKCkh+MH46ICRcbXUkID0gJFxtdV8wJCAgCkh+QX46ICRcbXUgXG5lIFxtdV8wJCAgb3IgICRcbXUgPCBcbXVfMCQgb3IgJFxtdSA+IFxtdV8wJAoKVGhlIHNhbXBsZSBzdGF0aXN0aWMgdXNlZCBpcyBhIHotdmFsdWU7CiR6ID0gXGZyYWN7XGJhcnt4fS1cbXVfMH17XGZyYWN7XHNpZ21hfXtcc3FydHtufX19JCAgCgpSZXBvcnQ6IHRoZSBuYW1lIG9mIHRoZSB0ZXN0IHVzZWQsIHotdmFsdWUsIHRoZSBQLXZhbHVlIGFuZCB0aGUgY29uY2x1c2lvbiBpbiB0aGUgY29udGV4dC4gIAoKIyMjIDIuIFQtdGVzdApUaGUgVC10ZXN0IGlzIHVzZWQgZm9yIGEgMS1zYW1wbGUgdGVzdCBhYm91dCBhIHBvcHVsYXRpb24gbWVhbiBpbiBjYXNlIHRoZSBwb3B1bGF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbiBpcyB1bmtub3duLiAgCgpIfjB+OiAkXG11JCA9ICRcbXVfMCQgIApIfkF+OiAkXG11IFxuZSBcbXVfMCQgIG9yICAkXG11IDwgXG11XzAkIG9yICRcbXUgPiBcbXVfMCQKClRoZSBzYW1wbGUgc3RhdGlzdGljIHVzZWQgaXMgYSB0LXZhbHVlIHdpdGggZGYgPSBuLTE7CiR0ID0gXGZyYWN7XGJhcnt4fS1cbXVfMH17XGZyYWN7c317XHNxcnR7bn19fSQgIAoKUmVwb3J0OiB0aGUgbmFtZSBvZiB0aGUgdGVzdCB1c2VkLCB0LXZhbHVlLCB0aGUgUC12YWx1ZSBhbmQgdGhlIGNvbmNsdXNpb24gaW4gdGhlIGNvbnRleHQuICAgICAKCipOb3RlLiogSW4gYSBzY2llbnRpZmljIHJlcG9ydCwgdGhlIGRlZ3JlZXMgb2YgZnJlZWRvbSBvZiB0aGUgdC1kaXN0cmlidXRpb24gdXNlZCB3aWxsIGFsc28gYmUgcmVwb3J0ZWQ7IHVuZm9ydHVuYXRlbHkgdGhlIGNhbGN1bGF0b3IgZG9lc24ndCBwcm92aWRlIHRoaXMgb3V0cHV0LiAgCgoKIyMjIDMuIDItU2FtcFpUZXN0CkEgMi1TYW1wbGUgWi1UZXN0IGlzIHVzZWQgZm9yIGEgc2lnbmlmaWNhbmNlIHRlc3QgYWJvdXQgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0d28gcG9wdWxhdGlvbiBtZWFucyBpbiBjYXNlIHRoZSBwb3B1bGF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbnMgYXJlIGtub3duLiAgCgpIfjB+OiAkXG11XzEgLSBcbXVfMiA9IDAkICAKSH5BfjogJFxtdV8xIC0gXG11XzIgXG5lIDAkICAgb3IgJFxtdV8xIC0gXG11XzIgPCAwJCAgb3IgJFxtdV8xIC0gXG11XzIgPiAwJAoKVGhlIHNhbXBsZSBzdGF0aXN0aWMgdXNlZCBpczogei12YWx1ZTsgJHogPSBcZnJhY3soXGJhcnt4XzF9IC0gXGJhcnt4XzJ9KSAtIDB9e1xzcXJ0e1xmcmFje1xzaWdtYV8xXjJ9e25fMX0rXGZyYWN7XHNpZ21hXzJeMn17bl8yfX19JCAgCgpSZXBvcnQ6IFJlcG9ydDogdGhlIG5hbWUgb2YgdGhlIHRlc3QgdXNlZCwgei12YWx1ZSwgdGhlIFAtdmFsdWUgYW5kIHRoZSBjb25jbHVzaW9uIGluIHRoZSBjb250ZXh0LiAKCiMjIyA0LiAyLVNhbXBUVGVzdApBIDItU2FtcGxlIFotVGVzdCBpcyB1c2VkIGZvciBhIHNpZ25pZmljYW5jZSB0ZXN0IGFib3V0IHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdHdvIHBvcHVsYXRpb24gbWVhbnMgaXMgY2FzZSB0aGUgcG9wdWxhdGlvbiBzdGFuZGFyZCBkZXZpYXRpb25zIGFyZSBrbm93bi4gIAoKSH4wfjogJFxtdV8xIC0gXG11XzIgPSAwJCAgCkh+QX46ICRcbXVfMSAtIFxtdV8yIFxuZSAwJCBvciAkXG11XzEgLSBcbXVfMiA8IDAkICBvciAkXG11XzEgLSBcbXVfMiA+IDAkIAoKVGhlIHNhbXBsZSBzdGF0aXN0aWMgdXNlZCBpczogdC12YWx1ZTsKJHQgPSBcZnJhY3tcYmFye3h9XzEgLSBcYmFye3h9XzJ9e1xzcXJ0e1xmcmFje3NfMV4yfXtuXzF9K1xmcmFje3NfMl4yfXtuXzJ9fX0kCiAKClJlcG9ydDogUmVwb3J0OiB0aGUgbmFtZSBvZiB0aGUgdGVzdCB1c2VkLCB0LXZhbHVlLCB0aGUgUC12YWx1ZSBhbmQgdGhlIGNvbmNsdXNpb24gaW4gdGhlIGNvbnRleHQuICAKCiMjIyA1LiAxLVByb3BaVGVzdApUaGUgWi10ZXN0IGlzIHVzZWQgZm9yIGEgMS1zYW1wbGUgdGVzdCBhYm91dCBhIHBvcHVsYXRpb24gcHJvcG9ydGlvbi4KCkh+MH46ICRwJCA9ICRwXzAkICAKSH5BfjogJHAgXG5lIHBfMCQgIG9yICAkcCA8IHBfMCQgb3IgJHAgPiBwXzAkCgpUaGUgc2FtcGxlIHN0YXRpc3RpYyB1c2VkIGlzIGEgei12YWx1ZSwgCiR6ID0gXGZyYWN7XGhhdHtwfS1wXzB9e1xzcXJ0e1xmcmFje3BfMCgxLXBfMCl9e259fX0kICAKClJlcG9ydDogdGhlIG5hbWUgb2YgdGhlIHRlc3QgdXNlZCwgei12YWx1ZSwgdGhlIFAtdmFsdWUgYW5kIHRoZSBjb25jbHVzaW9uIGluIHRoZSBjb250ZXh0LgoKIyMjIDYuIDItUHJvcFpUZXN0CkEgMi1TYW1wbGUgUHJvcG9ydGlvbiBaLVRlc3QgaXMgdXNlZCBmb3IgYSBzaWduaWZpY2FuY2UgdGVzdCBhYm91dCB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHR3byBwb3B1bGF0aW9uIHByb3BvcnRpb25zLiAgCgpIfjB+OiAkcF8xIC0gcF8yID0gMCQgIApIfkF+OiAkcF8xIC0gcF8yIFxuZSAwJCAgIG9yICRwXzEgLSBwXzIgPCAwJCAgb3IgJHBfMSAtIHBfMiA+IDAkCgpUZSBzYW1wbGUgc3RhdGlzdGljIHVzZWQgaXMgYSB6LXZhbHVlLCAKCiR6ID0gXGZyYWN7KFxoYXR7cH1fMS1caGF0e3B9XzIpLTB9e1xzcXJ0e1xmcmFje1xoYXR7cH1fMSgxLVxoYXR7cH1fMSl9e25fMX0rXGZyYWN7XGhhdHtwfV8yKDEtXGhhdHtwfV8yKX17bl8yfX19JCAgCgpSZXBvcnQ6IHRoZSBuYW1lIG9mIHRoZSB0ZXN0IHVzZWQsIHotdmFsdWUsIHRoZSBQLXZhbHVlIGFuZCB0aGUgY29uY2x1c2lvbiBpbiB0aGUgY29udGV4dC4KCiMjIyA3LiBaSW50ZXJ2YWwKQSBaLWludGVydmFsIGlzIGEgQ29uZmlkZW5jZSBJbnRlcnZhbCBmb3IgYW4gdW5rbm93biBQb3B1bGF0aW9uIE1lYW4gaW4gY2FzZSB0aGUgUG9wdWxhdGlvbiBTdGFuZGFyZCBEZXZpYXRpb24gaXMga25vd24uICAKCkZvcm11bGE6ICRDSSA9IFxiYXJ7eH0gXHBtIHogXHRpbWVzIFxmcmFje1xzaWdtYX17XHNxcnR7bn19JCAgCgpSZXBvcnQ6IENvbmZpZGVuY2UgTGV2ZWwsIHRoZSBib3JkZXJzIG9mIHRoZSBDSSBhbmQgaW50ZXJwcmV0YXRpb24gaW4gdGhlIGNvbnRleHQuICAKCgojIyMgOC4gVEludGVydmFsCkEgVC1pbnRlcnZhbCBpcyBhIENvbmZpZGVuY2UgSW50ZXJ2YWwgZm9yIGFuIHVua25vd24gUG9wdWxhdGlvbiBNZWFuIGluIGNhc2UgdGhlIFBvcHVsYXRpb24gU3RhbmRhcmQgRGV2aWF0aW9uIGlzIHVua25vd24uICAKCkZvcm11bGE6ICRDSSA9IFxiYXJ7eH0gXHBtIHQgXHRpbWVzIFxmcmFje3N9e1xzcXJ0e259fSQgClRoZSB0LXZhbHVlIGNvbWVzIGZyb20gdGhlIHQgZGlzdHJpYnV0aW9uIHdpdGggZGYgPSBuLTEuICAKClJlcG9ydDogQ29uZmlkZW5jZSBMZXZlbCwgdGhlIGJvcmRlcnMgb2YgdGhlIENJIGFuZCBpbnRlcnByZXRhdGlvbiBpbiB0aGUgY29udGV4dC4gCgojIyMgOS4gMi1TYW1wWkludCAKQSB0d28gU2FtcGxlIFogSW50ZXJ2YWwgaXMgYSBjb25maWRlbmNlIGludGVydmFsIGZvciB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHR3byBwb3B1bGF0aW9uIG1lYW5zIGluIGNhc2UgdGhlIHN0YW5kYXJkIGRldmlhdGlvbnMgb2YgdGhlIHR3byBwb3B1bGF0aW9ucyBhcmUga25vd24uICAKCkZvcm11bGE6ICRDSSA9IFxiYXJ7eH1fMSAtIFxiYXJ7eH1fMiBccG0geiBcdGltZXMgXHNxcnR7XGZyYWN7XHNpZ21hXzFeMn17bl8xfSArIFxmcmFje1xzaWdtYV8yXjJ9e25fMn19JCAgCgpSZXBvcnQ6IENvbmZpZGVuY2UgTGV2ZWwsIHRoZSBib3JkZXJzIG9mIHRoZSBDSSBhbmQgaW50ZXJwcmV0YXRpb24gaW4gdGhlIGNvbnRleHQuIAoKIyMjIDAuIDItU2FtcFRJbnQgCkEgdHdvIFNhbXBsZSBaIEludGVydmFsIGlzIGEgY29uZmlkZW5jZSBpbnRlcnZhbCBmb3IgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0d28gcG9wdWxhdGlvbiBtZWFucyBpbiBjYXNlIHRoZSBzdGFuZGFyZCBkZXZpYXRpb25zIG9mIHRoZSB0d28gcG9wdWxhdGlvbnMgYXJlIHVua25vd24uICAKCkZvcm11bGE6ICRDSSA9IFxiYXJ7eH1fMSAtIFxiYXJ7eH1fMiBccG0geiBcdGltZXMgXHNxcnR7XGZyYWN7c18xXjJ9e25fMX0gKyBcZnJhY3tzXzJeMn17bl8yfX0kICAgCgpSZXBvcnQ6IENvbmZpZGVuY2UgTGV2ZWwsIHRoZSBib3JkZXJzIG9mIHRoZSBDSSBhbmQgaW50ZXJwcmV0YXRpb24gaW4gdGhlIGNvbnRleHQuIAoKIyMjIEEuIDEtUHJvcFpJbnRlcnZhbApBIFotaW50ZXJ2YWwgaXMgYSBDb25maWRlbmNlIEludGVydmFsIGZvciBhbiB1bmtub3duIFBvcHVsYXRpb24gUHJvcG9ydGlvbi4KCkZvcm11bGE6ICRDSSA9IFxoYXR7cH0gXHBtIHogXHRpbWVzIFxzcXJ0e1xmcmFje1xoYXR7cH0oMS1caGF0e3B9KX17e259fX0kICAKClJlcG9ydDogQ29uZmlkZW5jZSBMZXZlbCwgdGhlIGJvcmRlcnMgb2YgdGhlIENJIGFuZCBpbnRlcnByZXRhdGlvbiBpbiB0aGUgY29udGV4dC4gIAoKIyMjIEIuIDItUHJvcFpJbnRlcnZhbApBIHR3byBQcm9wb3J0aW9uIFogSW50ZXJ2YWwgaXMgYSBjb25maWRlbmNlIGludGVydmFsIGZvciB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHR3byBwb3B1bGF0aW9uIHByb3BvcnRpb25zLiAgCgpGb3JtdWxhOiAkQ0kgPSBcaGF0e3BfMX0gLSBcaGF0e3BfMn0gIFxwbSB6IFx0aW1lcyBcc3FydHtcZnJhY3tcaGF0e3B9XzEoMS1caGF0e3B9XzEpfXtuXzF9K1xmcmFje1xoYXR7cH1fMigxLVxoYXR7cH1fMil9e25fMn19JAoKUmVwb3J0OiBDb25maWRlbmNlIExldmVsLCB0aGUgYm9yZGVycyBvZiB0aGUgQ0kgYW5kIGludGVycHJldGF0aW9uIGluIHRoZSBjb250ZXh0LiAgCg==